Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
J Biol Chem ; 299(2): 102836, 2023 02.
Article in English | MEDLINE | ID: covidwho-2239311

ABSTRACT

Gap junctional intercellular communication (GJIC) involving astrocytes is important for proper CNS homeostasis. As determined in our previous studies, trafficking of the predominant astrocyte GJ protein, Connexin43 (Cx43), is disrupted in response to infection with a neurotropic murine ß-coronavirus (MHV-A59). However, how host factors are involved in Cx43 trafficking and the infection response is not clear. Here, we show that Cx43 retention due to MHV-A59 infection was associated with increased ER stress and reduced expression of chaperone protein ERp29. Treatment of MHV-A59-infected astrocytes with the chemical chaperone 4-sodium phenylbutyrate increased ERp29 expression, rescued Cx43 transport to the cell surface, increased GJIC, and reduced ER stress. We obtained similar results using an astrocytoma cell line (delayed brain tumor) upon MHV-A59 infection. Critically, delayed brain tumor cells transfected to express exogenous ERp29 were less susceptible to MHV-A59 infection and showed increased Cx43-mediated GJIC. Treatment with Cx43 mimetic peptides inhibited GJIC and increased viral susceptibility, demonstrating a role for intercellular communication in reducing MHV-A59 infectivity. Taken together, these results support a therapeutically targetable ERp29-dependent mechanism where ß-coronavirus infectivity is modulated by reducing ER stress and rescuing Cx43 trafficking and function.


Subject(s)
Disease Susceptibility , Endoplasmic Reticulum , Host Microbial Interactions , Molecular Chaperones , Murine hepatitis virus , Animals , Mice , Astrocytoma/pathology , Astrocytoma/virology , Brain Neoplasms/pathology , Brain Neoplasms/virology , Cell Communication , Cell Line, Tumor , Connexin 43/metabolism , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Stress , Gap Junctions/metabolism , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Murine hepatitis virus/metabolism , Protein Transport , Transfection
2.
Viruses ; 15(1)2023 Jan 12.
Article in English | MEDLINE | ID: covidwho-2200877

ABSTRACT

The ß-Coronavirus mouse hepatitis virus (MHV-A59)-RSA59 has a patent stretch of fusion peptide (FP) containing two consecutive central prolines (PP) in the S2 domain of the Spike protein. Our previous studies compared the PP-containing fusogenic-demyelinating strain RSA59(PP) to its one proline-deleted mutant strain RSA59(P) and one proline-containing non-fusogenic non-demyelinating parental strain RSMHV2(P) to its one proline inserted mutant strain RSMHV2(PP). These studies highlighted the crucial role of PP in fusogenicity, hepato-neuropathogenesis, and demyelination. Computational studies combined with biophysical data indicate that PP at the center of the FP provides local rigidity while imparting global fluctuation to the Spike protein that enhances the fusogenic properties of RSA59(PP) and RSMHV2(PP). To elaborate on the understanding of the role of PP in the FP of MHV, the differential neuroglial tropism of the PP and P mutant strains was investigated. Comparative studies demonstrated that PP significantly enhances the viral tropism for neurons, microglia, and oligodendrocytes. PP, however, is not essential for viral tropism for either astroglial or oligodendroglial precursors or the infection of meningeal fibroblasts in the blood-brain and blood-CSF barriers. PP in the fusion domain is critical for promoting gliopathy, making it a potential region for designing antivirals for neuro-COVID therapy.


Subject(s)
Murine hepatitis virus , Spike Glycoprotein, Coronavirus , Viral Tropism , Animals , Mice , Murine hepatitis virus/physiology , Peptides/metabolism , Proline , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Viral Envelope Proteins/metabolism
3.
Anal Chim Acta ; 1230: 340394, 2022 Oct 16.
Article in English | MEDLINE | ID: covidwho-2031063

ABSTRACT

ß-coronaviruses (ß-CoVs), representative with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), depend on their highly glycosylated spike proteins to mediate cell entry and membrane fusion. Compared with the extensively identified N-glycosylation, less is known about O-glycosylation of ß-CoVs S proteins, let alone its biological functions. Herein we comprehensively characterized O-glycosylation of five recombinant ß-CoVs S1 subunits and revealed the macro- and micro-heterogeneity nature of site-specific O-glycosylation. We also uncovered the O-glycosylation differences between SARS-CoV-2 and its natural D614G mutant on functional domains. This work describes the systematic O-glycosylation analysis of ß-CoVs S1 proteins and will help to guide the related vaccines and antiviral drugs development.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Antiviral Agents , Fibronectins , Glycosylation , Humans , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
4.
Viruses ; 14(4)2022 04 17.
Article in English | MEDLINE | ID: covidwho-1792411

ABSTRACT

Combined in silico, in vitro, and in vivo comparative studies between isogenic-recombinant Mouse-Hepatitis-Virus-RSA59 and its proline deletion mutant, revealed a remarkable contribution of centrally located two consecutive prolines (PP) from Spike protein fusion peptide (FP) in enhancing virus fusogenic and hepato-neuropathogenic potential. To deepen our understanding of the underlying factors, we extend our studies to a non-fusogenic parental virus strain RSMHV2 (P) with a single proline in the FP and its proline inserted mutant, RSMHV2 (PP). Comparative in vitro and in vivo studies between virus strains RSA59(PP), RSMHV2 (P), and RSMHV2 (PP) in the FP demonstrate that the insertion of one proline significantly resulted in enhancing the virus fusogenicity, spread, and consecutive neuropathogenesis. Computational studies suggest that the central PP in Spike FP induces a locally ordered, compact, and rigid structure of the Spike protein in RSMHV2 (PP) compared to RSMHV2 (P), but globally the Spike S2-domain is akin to the parental strain RSA59(PP), the latter being the most flexible showing two potential wells in the energy landscape as observed from the molecular dynamics studies. The critical location of two central prolines of the FP is essential for fusogenicity and pathogenesis making it a potential site for designing antiviral.


Subject(s)
Demyelinating Diseases , Spike Glycoprotein, Coronavirus , Animals , Mice , Peptides/metabolism , Proline , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Viral Envelope Proteins/metabolism
5.
Viruses ; 14(3)2022 03 06.
Article in English | MEDLINE | ID: covidwho-1732247

ABSTRACT

Our previous studies have shown that cholesterol-conjugated, peptide-based pan-coronavirus (CoV) fusion inhibitors can potently inhibit human CoV infection. However, only palmitic acid (C16)-based lipopeptide drugs have been tested clinically, suggesting that the development of C16-based lipopeptide drugs is feasible. Here, we designed and synthesized a C16-modified pan-CoV fusion inhibitor, EK1-C16, and found that it potently inhibited infection by SARS-CoV-2 and its variants of concern (VOCs), including Omicron, and other human CoVs and bat SARS-related CoVs (SARSr-CoVs). These results suggest that EK1-C16 could be further developed for clinical use to prevent and treat infection by the currently circulating MERS-CoV, SARS-CoV-2 and its VOCs, as well as any future emerging or re-emerging coronaviruses.


Subject(s)
COVID-19 Drug Treatment , Middle East Respiratory Syndrome Coronavirus , Humans , Lipopeptides/pharmacology , Palmitic Acid/pharmacology , SARS-CoV-2
6.
Biomed Pharmacother ; 146: 112550, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1588217

ABSTRACT

Coronavirus is a family of viruses that can cause diseases such as the common cold, severe acute respiratory syndrome (SARS), and Middle East respiratory syndrome (MERS). The universal outbreak of coronavirus disease 2019 (COVID-19) caused by SARS coronaviruses 2 (SARS-CoV-2) has become a global pandemic. The ß-Coronaviruses, which caused SARS-CoV-2 (COVID-19), have spread in more than 213 countries, infected over 81 million people, and caused more than 1.79 million deaths. COVID-19 symptoms vary from mild fever, flu to severe pneumonia in severely ill patients. Difficult breathing, acute respiratory distress syndrome (ARDS), acute kidney disease, liver damage, and multi-organ failure ultimately lead to death. Researchers are working on different pre-clinical and clinical trials to prevent this deadly pandemic by developing new vaccines. Along with vaccines, therapeutic intervention is an integral part of healthcare response to address the ongoing threat posed by COVID-19. Despite the global efforts to understand and fight against COVID-19, many challenges need to be addressed. This article summarizes the current pandemic, different strains of SARS-CoV-2, etiology, complexities, surviving medications of COVID-19, and so far, vaccination for the treatment of COVID-19.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/genetics , Genetic Variation/genetics , SARS-CoV-2/genetics , Vaccination/trends , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/genetics , Antiviral Agents/administration & dosage , COVID-19/prevention & control , COVID-19 Vaccines/genetics , Disease Outbreaks/prevention & control , Humans , Medicine, Chinese Traditional/trends , Vaccination/methods , COVID-19 Drug Treatment
7.
Immunopharmacol Immunotoxicol ; 43(1): 1-7, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-744448

ABSTRACT

The SARS-CoV-2 is a ß-CoV, which is enveloped by non-segmented positive-stranded RNA virüs. When ß-CoV infects the respiratory tract, it can cause mild and/or severe acute respiratory syndrome (SARS) with consequent release of cytokines/mediators, including interleukin (IL)-1ß, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8 (CXCL8), IL-10, IP10, IL-12, IL-13, IL-17, IL-33, IL-25, IL-37, IL-38, GCSF, GM-CSF, HGF, IP-10, MCP-1, MIP-1α (also known as CCL3), IFN-γ, IFN-α, TRAIL, MCSF, and TNF-α. Our hypothesis of writing this article can be summarized as; if the monoclonal antibody (mAb) administered by us does not inhibit the immune response for the ß-CoV and inhibits uncontrolled-adaptive/hyperimmune responses (also called cytokine storm) on endothelium level, then it may cause severe coronavirus disease 2019 (COVID-19). Anakinra is a human IL-1 receptor antagonist. By inhibiting IL-1α/IL-1ß competitively from binding to the IL-1 type-I receptor, anakinra, neutralizes the activity that pertains to these key mediators of autoinflammatory and/or immune processes. Tocilizumab is a blocker of IL-6R that can effectively block IL-6 signal transduction pathway. Omalizumab that binds to the CH3 domain is near to the binding site for the high-affinity IgE Fc receptors type-I of human IgE. Myocardial, lung and hepatorenal injury in patients with COVID-19 could be due to cytokine storm, hypoxic injury, or/and direct endothelial/vascular injury. We propose combination of mAbs with remdesivir and/or favipiravir in severe COVID-19 cases, such as septic shock, acute respiratory deficiency syndrome, and/or multiple organ failure. Finally, we highlight the therapeutic mAbs that target patients with severe COVID-19.


Subject(s)
Antiviral Agents/therapeutic use , Biological Products/therapeutic use , COVID-19 Drug Treatment , Antibodies, Monoclonal, Humanized/therapeutic use , Humans , SARS-CoV-2/drug effects
8.
J Neurol ; 268(5): 1561-1569, 2021 May.
Article in English | MEDLINE | ID: covidwho-690421

ABSTRACT

OBJECT: The novel severe acute respiratory syndrome (SARS)-CoV-2 outbreak has been declared a pandemic in March, 2020. An increasing body of evidence suggests that patients with the coronavirus disease (COVID-19) might have a heterogeneous spectrum of neurological symptoms METHODS: A systematic search of two databases was performed for studies published up to May 29th, 2020. PRISMA guidelines were followed. RESULTS: We included 19 studies evaluating 12,157 patients with laboratory-confirmed COVID-19 infections. The median age of patients was 50.3 (IQR 11.9), and the rate of male patients was 50.6% (95% CI 49.2-51.6%). The most common reported comorbidities were hypertension and diabetes (31.1%, 95% CI 30-32.3% and 13.5%, 95% CI 12.3-14.8%, respectively). Headache was reported in 7.5% of patients (95% CI 6.6-8.4%), and dizziness in 6.1% (95% CI 5.1-7.1%). Hypo/anosmia, and gustatory dysfunction were reported in 46.8 and 52.3%, of patients, respectively. Symptoms related to muscular injury ranged between 15 and 30%. Three studies reported radiological confirmed acute cerebrovascular disease in 2% of patients (95% CI 1.6-2.4%). CONCLUSIONS: These data support accumulating evidence that a significant proportion of patients with COVID-19 infection develop neurological manifestations, especially olfactory, and gustatory dysfunction. The pathophysiology of this association is under investigation and warrants additional studies, Physicians should be aware of this possible association because during the epidemic period of COVID-19, early recognition of neurologic manifestations otherwise not explained would raise the suspect of acute respiratory syndrome coronavirus 2 infection.


Subject(s)
COVID-19/epidemiology , Nervous System Diseases/epidemiology , COVID-19/virology , Humans , Nervous System Diseases/virology , Pandemics , SARS-CoV-2/pathogenicity , United States
SELECTION OF CITATIONS
SEARCH DETAIL